電子自旋有多神奇?
電子,是世界上最神祕的粒子之一。它不只帶有負電荷,還會「自旋」。這個奇異的特性,是整個物質世界的根基,也是當代磁學的關鍵字,促成磁性記憶體等重大科技突破。研之有物專訪中研院院士、約翰霍普金斯大學物理系錢嘉陵講座教授,娓娓道來電子自旋如何開啟「現代磁學的黃金時代」。
電子自旋 = 旋轉的電子?
首先,「自旋 1/2 」的電子是怎麼回事?難道電子會轉,而且永遠只轉半圈?
電子自旋,指的是電子帶有的一種量子性質,簡單說,科學家觀察到了電子具有自旋角動量,而帶電的粒子只要旋轉,就會產生磁場。換句話說,每個電子不只是帶著負電荷的一個小粒子,還是一個「超級迷你磁鐵」(磁矩)。
不過,在一般巨觀的世界裡,物體具有角動量代表正在旋轉,但在量子世界裡,電子雖有角動量,卻不能理解成電子真的在轉。錢嘉陵解釋:「電子是個體積無限小的粒子,沒有體積,所以不可能轉動,自旋完全是量子力學的概念。」沒有體積,卻有角動量,量子世界就是這麼不可思議!
量子世界的另一個不思議,在於所有東西都「量子化」,電子自旋也一樣──電子自旋角動量值在磁場中只能是 1/2 或 -1/2 ,沒有其他可能的值,這就是「電子自旋 1/2 」的由來。許多其他的粒子也有自旋角動量值,但統統只能是 1/2 的倍數,而且相鄰一定差 1 ,例如自旋 1 [1, 0, -1] 或是自旋 3/2 [3/2, 1/2, -1/2, -3/2] 。
如此違反直覺的電子自旋,究竟是怎麼被發現的呢?
純屬意外!發現電子自旋 1/2
電子自旋的發現,來自一場「想不到可以成功」的實驗。 1913 年,波耳( Niels Bohr )提出角動量量子化的概念,也就是在量子世界,角動量必定是「普朗克常數除以 2π 」(符號為 ℏ )的整數倍,例如某種粒子具有的角動量是 ℏ 的 1 倍,代表在觀察這種粒子時,角動量只可以是 ℏ 的 -1 、 0 、 +1 倍,不能是 ℏ 的 0.1 倍、 0.2 倍等等介於中間的值。
這個概念對當時的人來說太前衛,違反直覺,反對者包括接下來上場的兩位主角──斯特恩( Otto Stern )與格拉赫( Walther Gerlach )。
斯特恩與格拉赫於 1922 年設計了一個實驗,本意為「反駁」波耳的說法。他們將「銀」蒸發,產生銀原子束,穿過一個不均勻的磁場,投射到屏幕上。在通過不均勻磁場時,帶有角動量的銀原子會受到偏折。如果角動量不是量子化的 (具有各種方向的角動量),偏折的角度將有無限可能,屏幕上應是一片連續分布的銀原子。但實驗結果出人意表:銀原子偏折的角度只有兩個。換言之,角動量真的是量子化的!如以下影片所示:
在做實驗之前,斯特恩信心滿滿的說:「波耳這個沒道理的模型如果是對的,我退出物理圈!」格拉赫也說:「沒有實驗這麼蠢的!」(不過他們還是做了。)但最後他們不但被狠狠打臉,還寄了明信片給波耳告解:「波耳,你終究是對的。」
不過,這兩人的臉可沒被白打,這個實驗正式拉開現代電磁學的序幕!「當時他們看到的現象,其實就是電子的自旋 1/2 !因電子的自旋角動量只有兩種可能: -1/2 及 +1/2 ,所以只會產生兩條偏折路線。」錢嘉陵笑著說:「能夠看見這個現象,真的很走運!」
這兩位科學家有多走運?兩人使用的粒子束雖然不是電子,卻正好是銀原子,這是少數體積夠大足以觀測、整體效應卻又等同一個電子的粒子。「如果他們換一種原子來做,就不會看到自旋了!」錢嘉陵提出另一幸運條件:「這個實驗的銀原子這麼少,怎麼看得見?原來當時的科學家會在實驗室抽雪茄菸,是煙,讓銀原子現形。」
儘管自旋在 1922 年就發現了,但礙於自旋是奈米尺度的現象,需要高科技的觀測技術才能觀察,因此又過了六十幾年,相關成果才開始嶄露頭角,包括發現層間耦合( interlayer coupling )以及巨磁阻效應( giant magnetoresistance )等等。「自 1986 年起,幾乎每一兩年,大家就找到一個關於自旋的新題目,現代磁學的黃金時代就此揭開序幕。」錢嘉陵回想。
若用一個詞來敘述「現代磁學」,那個詞就是「自旋」。
自旋電子引爆磁性記憶體革命
自旋電子學出現的年代,正是電腦蓬勃發展的年代。電腦裡負責長期儲存的硬碟,內部是塗滿了磁性物質的碟片,也就是每個記憶單元都像是一個小磁鐵一樣,以磁矩的方向來記錄 0 或 1 。因為磁矩的方向不會輕易消失,即使電腦關機、不通電了,也能儲存資料。
然而科技的快速發展,磁紀錄的密度愈來愈高。自 1957 年第一個硬碟發明以來, 50 年內硬碟的儲存密度增加了 10 億倍。這意味著同樣的體積裡多了 10 億倍以上的小磁鐵,或者說,每個小磁鐵的體積縮小了 10 億倍。在磁鐵密度不斷增高、體積不斷縮小的情況下,不論是製作硬碟或是讀寫資料,皆越來越困難。
幸好,我們有了自旋電子學! 1986 年,科學家發現當兩層鐵磁性薄膜中間夾著特定金屬時,隨著特定金屬厚度改變,鐵磁薄膜的磁場方向會跟著改變,以反向、同向、反向、同向…… 交互循環,稱為「層間耦合」。錢嘉陵解釋:「這個現象很奇特,裡面學問很多,所以一時之間大家都在研究層間耦合,包括我。」
1988 年,法國科學家費爾特( Albert Fert )發現,若對薄膜磁場反向的層間耦合元件加上一個大磁場,將其中一片薄膜的磁場硬是翻轉過來,就可以讓這個元件的電阻降得很低,而且幅度高達 50% ,這就是「巨磁阻效應」。
為什麼會有巨磁阻效應?因為電子自旋有上、下兩個方向。如果今天電子通過的導體裡有上、下兩種方向的磁場,兩種自旋的電子都會受到干擾,這時電阻就會很大。但如果導體裡只有一種方向的磁場,其中一種自旋方向的電子就可順利通過,不受干擾,電阻就會變小。
巨磁阻效應潛力無窮
巨磁阻效應為硬碟磁紀錄的設計帶來了全新可能。其中一個重要的例子,便是德國物理學家格林貝格(Peter Grünberg)利用巨磁阻效應研發了「自旋閥結構 (spin valve structure) 」,改變了硬碟讀取頭的運作模式。最早的硬碟讀取頭,是將纏繞有感應線圈磁性物質對準記錄的磁區,再根據感應線圈的磁通量變化所產生的感應電流,來得知該磁區記錄的是 0 或 1 。然而,磁區對感應線圈造成的磁場如果不夠大,感應電流不夠明顯,讀取就可能產生誤差。
自旋閥結構的好處就是只需要小小的磁場,就能產生明顯的電阻變化,不但使得讀取能精準正確,還能減少耗費的能量。
除此之外,科學家也利用巨磁阻效應,開發了「磁阻式隨機存取記憶體」(MRAM),和以往的各種記憶體相比,MRAM 可望擁有非易失性 (關機斷電也不會流失資訊)、讀寫耗費的能量都少(省電)、處理速度快,磁紀錄密度又高的特性。
下一步呢?包括如何用電流更快翻轉磁矩以完成讀寫,甚至以電子自旋流取代電流等等研究,對於未來的電腦科技,可望帶來世紀性的突破。更多精彩研究,快點開中研院知識饗宴「自旋電子學:現代磁學的黃金時代」,讓錢嘉陵院士帶你走進當代磁學最前沿:
原文連結:
延伸閱讀:
- 錢嘉陵院士網頁
- 〈 2007 諾貝爾物理獎專題報導 -- 巨磁阻效應之物理原理與應用〉,《成大研發快訊》第一卷第九期。
- 〈巨磁電阻的原理與應用〉,《科學發展》第 426 期。